
1

Zero-Knowledge Sets with Short Proofs
Dario Catalano∗, Mario Di Raimondo∗, Dario Fiore†, Mariagrazia Messina‡
∗ Dipartimento di Matematica ed Informatica – Università di Catania, Italy

{catalano,diraimondo}@dmi.unict.it
† Ècole Normale Supèrieure – CNRS-INRIA, Paris, France

dario.fiore@ens.fr
‡ Microsoft Italia

mariame@microsoft.com

Abstract—Zero Knowledge Sets, introduced by Micali, Rabin
and Kilian in 2003, allow a prover to commit to a secret set S in a
way such that it can later prove, non interactively, statements of
the form x ∈ S (or x /∈ S), without revealing any further informa-
tion (on top of what explicitly revealed by the inclusion/exclusion
statements above) on S, not even its size. Later, Chase et al.
abstracted away the Micali, Rabin and Kilian’s construction by
introducing an elegant new variant of commitments that they
called (trapdoor) mercurial commitments. Using this primitive,
it was shown how to construct zero knowledge sets from a variety
of assumptions (both general and number theoretic).

This paper introduces the notion of trapdoor q-mercurial
commitments (qTMCs), a notion of mercurial commitment that
allows the sender to commit to an ordered sequence of exactly
q messages, rather than to a single one. Following the previous
work it is shown how to construct ZKS from qTMCs and collision
resistant hash functions.

Then, it is presented an efficient realization of qTMCs that is
secure under the so called Strong Diffie Hellman assumption,
a number theoretic conjecture recently introduced by Boneh
and Boyen. Using such scheme as basic building block, it is
obtained a construction of ZKS that allows for proofs that
are much shorter with respect to the best previously known
implementations. In particular, for an appropriate choice of the
parameters, our proofs are up to 33% shorter for the case of
proofs of membership, and up to 73% shorter for the case of
proofs of non membership. Experimental tests confirm practical
time performances.

Index Terms—Security, integrity and protection, Public Key
Cryptosystems.

I. INTRODUCTION

IMAGINE some party P wants to commit to a set S, in
a way such that any other party V can “access” S in a

limited but reliable manner. By limited here we mean that V
is given indirect access to S, in the sense that she is allowed
to ask only questions of the form “is x in S?”. P answers
such questions by providing publicly verifiable proofs for the
statements x ∈ S (or x /∈ S). Such proofs should be reliable
in the sense that a cheating P should not be able to convince
V that some x is in the set while is not (or viceversa). At
the same time, they should be “discreet” enough not to reveal
anything beyond their validity.

An extended abstract of this paper appears in the proceedings of EURO-
CRYPT 2008 [5].

Sponsored by MIUR under project “Priv-Ware” (contract n. 2007JXH7ET).
The third and fourth authors entirely did the present work while students

at University of Catania.

The notion of Zero Knowledge Sets (ZKS) was recently
introduced by Micali, Rabin and Kilian [20] to address exactly
this problem. Informally, ZKS allow a prover P to commit to
an arbitrary (but finite) set S in a way such that P can later
prove statements of the form x ∈ S or x /∈ S without revealing
any significant information about S (not even its size!). As
already pointed out in [20], the notion of Zero-Knowledge Sets
can be easily extended to encompass the more general notion
of elementary databases (EDB). In a nutshell, an elementary
database is a set S with the additional property that each x ∈ S
comes with an associated value S(x). In the following we will
refer to ZKS to include Zero-Knowledge EDB as well.

The solution by Micali et al. is non interactive and works in
the so called shared random string model (i.e. where a random
string, built by some trusted third party, is made available to all
participants) building upon a very clever utilization of a simple
commitment scheme, originally proposed by Pedersen [26].

Commitment schemes play a central role in cryptography.
Informally, they can be seen as the digital equivalent of
an opaque envelope. Whatever is put inside the envelope
remains secret until the latter is opened (hiding property)
and whoever creates the commitment should not be able to
open it with a message that is not the one originally inserted
(binding property). Typically, a commitment scheme is a two
phase procedure. During the first phase, the sender creates
a commitment C, to some message m, using an appropriate
commitment algorithm, and sends C to the receiver R. In
the opening phase the sender opens C by giving R all the
necessary material to (efficiently) verify that C was indeed a
valid commitment to m.

Since Pedersen’s commitment relies on the intractability of
the discrete logarithm, so does the construction in [20]. Later,
Chase et al. [6] abstracted away Micali et al.’s solution and
described the exact properties a commitment scheme should
possess in order to allow a similar construction. This led to an
elegant new variant of commitments, that they called mercurial
commitment.

Informally, a mercurial commitment is a commitment
scheme where the binding requirement is somewhat relaxed
in order to allow for two decommitment procedures: an hard
and a soft one. At committing time, the sender can decide as
whether to create an hard commitment or a soft one, from
the message m he has in mind. Hard commitments are like
standard ones, in the sense that they can be (hard or soft)

2

opened only with respect to the message that was originally
used to construct the commitment. Soft commitments, on the
other hand, allow for more freedom, as they cannot be hard
opened in any way, but they can be soft opened to any arbitrary
message. An important requirement of mercurial commitments
is that, hard and soft commitments should look alike to any
polynomially bounded observer.

Using this new primitive, Chase et al. proved that it is
possible to construct ZKS from a variety of assumptions (num-
ber theoretic or general)1. Their most general implementation,
shows that (non interactive) ZKS can be constructed, in the
shared random string model, assuming non interactive zero
knowledge proofs (NIZK) [2] and collision resistant hash
functions [9]2. Moreover, they showed that collision resistant
hash functions are necessary to construct ZKS, as they are
implied by the latter. Finally, Catalano, Dodis and Visconti [4]
gave a construction of (trapdoor) mercurial commitments from
one way functions in the shared random string model. This
result completed the picture as it showed that collision resistant
hash functions are necessary and sufficient for non interactive
ZKS in the shared random string model.

OUR CONTRIBUTION. All the constructions above, build upon
the common idea of constructing an authenticated Merkle tree
of depth k where each internal node is a mercurial commitment
(rather than the hash) of its two children. Very informally, to
prove that a given x ∈ {0, 1}k belongs to the committed set
S, the prover simply opens all the commitments in the path
from the root to the leaf labeled by x (more details about
this methodology will be given later on). Thus the length of
the resulting proof is k · d, where d denotes the length of the
opening of the mercurial commitment, and k has to be chosen
so that 2k is larger than the size of any “reasonably” large set
S3. Assuming k = 128 and d = O(k), as it is the case for all
known implementations, this often leads to very long proofs.

It is thus important to research if using the properties of
specific number-theoretic problems, it is possible to devise
zero knowledge sets that allow for shorter proofs. Such proofs
would be desirable in all those scenarios where space or
bandwidth are limited. A typical example of such a scenario is
mobile internet connections, where customers pay depending
on the number of blocks sent and received.

In this paper, we present a new construction of ZKS that
allows for much shorter proofs, with respect to the best
currently known implementation (which is the Micali et al.
construction when implemented on certain classes of elliptic
curves. From now on we will use the acronym MRK to refer
to such an implementation). As shown in Section V, the
proposed construction keep a practical interest with a good

1More precisely, they require the mercurial commitment to be trapdoor
as well. Very informally, this means that the scheme comes with a trapdoor
information tk (normally not available to anyone) that allows to completely
destroy the binding property of the commitment

2It is known that one can construct NIZK under the assumption that
trapdoor permutations exist or under the assumption that verifiable random
functions (VRF) exist [14], [21]. These two assumptions, however, are, as far
as we currently know, incomparable.

3This is because 2k is also an upper bound for the size of the set. Thus,
to meet the requirements of ZKS it should not reveal anything about the
cardinality of the set itself.

time efficiency as proved by some experimental tests.
Our solution relies on a new primitive that we call trap-

door q-Mercurial Commitment (qTMC, for short). Informally,
qTMCs allow the sender to commit to a sequence of exactly
q messages (m1, . . . ,mq), rather than to a single one, as with
standard mercurial commitments. The sender can later open
the commitment with respect to any message mi but, in order
to do so successfully, he has to correctly specify the exact
position held by the message in the sequence. In other words,
trapdoor q-Mercurial commitments allow to commit to ordered
sequences of q messages.

Following [6], [20], we show how to construct ZKS from
qTMCs and collision resistant hash functions. This step is
rather simple but very useful for our goal, as it reduces the
task of realizing efficient ZKS to the task of realizing efficient
qTMCs. Indeed, even though the proposed transformation
allows us to use a “flat” Merkle tree (i.e. with branching factor
q, rather than two), it does not lead, by itself, to shorter proofs.

Recall that, informally, a proof for the statement x ∈ S
(or x /∈ S) consists of an authenticated path from the root
to the leaf labeled by x. The trouble is that in all known
implementations of ZKS, to verify the authenticity of a node
in the path, one must know all siblings of the node. If the
tree is binary, the proof contains twice as many nodes as the
the depth of the tree (since each node must be accompanied
by its sibling). Thus, the length of a proof being proportional
to the branching factor of the tree, increasing the latter, is
actually a bad idea in general. Indeed, suppose we want to
consider sets defined over a universe of N elements. Using
a binary authentication tree one gets proofs whose length
is proportional to log2N · (2n), where n is the size of the
authentication information contained in each node. Using a
tree with branching degree q, on the other hand, one would
get proofs of size logq N · (qn), which is actually more than
in previous case.

OVERCOMING THE PROOFS BLOW-UP. In this paper we pro-
pose an implementation of trapdoor q mercurial commitments
that overcomes the above limitation. Our solution relies on
the so called Strong Diffie Hellman assumption originally
introduced by Boneh and Boyen [3] and builds upon the
weakly secure digital signature given in [3]. The proposed im-
plementation exploits the algebraic properties of the employed
number theoretic primitive to produce a qTMC that allows for
short openings. More precisely the size of each hard opening
still depends linearly on q, but the size of each soft opening
becomes constant and completely independent of q.

This results in ZKS that allow for much shorter proofs
than MRK. Concretely, and for an appropriate choice of the
parameter q, our proofs are up to 33% shorter for the case of
proofs of membership, and up to 73% shorter for the case of
proofs of non membership.

In addition, we provide a more detailed comparison between
the MRK scheme and the ours by giving an implementation
of both schemes. We ran experimental tests to measure their
performances in terms of time efficiency and the results of
such experiments showed that our proposal is widely practical
in time efficiency and it is even better in some operations when

3

compared with MRK.

ZERO KNOWLEDGE SETS VS SIGNATURES. The idea of ob-
taining short proofs by changing the authentication procedure
to deal with a “flat” authentication tree, is reminiscent of a
technique originally suggested by Dwork and Naor [10], in the
context of digital signature schemes. In a nutshell, the Dwork-
Naor method allows to increase the branching factor of the
tree without inflating the signature size. This is achieved, by,
basically, authenticating each node with respect to its parent,
but without providing its siblings.

Adapting this idea to work to the case of zero knowledge
sets, presents several non trivial technical difficulties4. The
main problem comes from the fact that, in ZKS, one has to
make sure that a dishonest prover cannot construct two, both
valid, proofs for the statements x ∈ S and x /∈ S. Such a
requirement imposes limitations just not present when dealing
with digital signatures.

OTHER RELATED WORK. Very recently Libert and Yung [15]
solved the problem left open in [5] of having qTMCs where
hard openings are of size independent of q. The construction
proposed in [15] is based on the q-DHE assumption and allows
to build ZKS where even membership proofs can be made
shorter by increasing the branching factor of the tree.

Ostrovsky, Rackoff and Smith [24] described a construction
that allows a prover to commit to a database and to provide an-
swers that are consistent with the commitment. Their solution
can handle more elaborate queries than just membership ones.
Moreover they also consider the issue of adding privacy to
their protocol. However their construction requires interaction
(at least if one wants to avoid the use of random oracles) and
requires the prover to keep a counter for the questions asked
so far.

Gennaro and Micali introduced in [12] the notion of in-
dependent zero knowledge sets. Informally, independent ZKS
protocols prevent an adversary from successfully correlate her
set to the one of a honest prover. Their notion of independence
also implies that the resulting ZKS protocol is non-malleable
and requires a new commitment scheme that is both indepen-
dent and mercurial. We do not consider such an extension
here.

Liskov [18] considered the problem of updating zero-
knowledge databases. In [18] definitions for updatable zero
knowledge databases are given, together with a construction
based on verifiable random functions [21] and mercurial
commitments. The construction, however, is in the random
oracle model [1].

Prabhakaran and Xue [27] introduced the notion of statisti-
cally hiding sets (SHS) that is related but different than ZKS.
Informally, SHS require the hiding property to hold with re-
spect to unbounded verifiers. At the same time, however, they
relax the zero knowledge requirement to allow for unbounded
simulators.

Finally it may be of interest to observe that the accumulator
proposed by Nguyen in [22] has a construction similar to our
q-mercurial commitment scheme.

4It is probably instructive to mention the fact that, indeed, the Dwork Naor
solution, and its improvements such as [8], do not work in our setting

ROAD MAP. The paper is organized as follows. In section II
we introduce the notion of trapdoor q mercurial commitments
and provide the relevant definitions for zero knowledge sets.
Section III is devoted to the construction of ZKS from trapdoor
q mercurial commitments. In Section IV we show how to
construct efficient qTMCs from the Strong Diffie Hellman
Assumption. A formal and experimental efficiency analysis
is given in Section V. Finally conclusions and directions for
future work are given in Section VI.

II. PRELIMINARIES

Before presenting our results we briefly recall some basic
definitions. In what follows we will denote with k a security
parameter. Denote with N the set of natural numbers and with
R+ the set of positive real numbers. We say that a function
ε : N → R+ is negligible if and only if for every positive
polynomial P (k) there exists a k0 ∈ N such that for all k > k0
ε(k) < 1/P (k). If S is a set, we write x $← S to indicate the
process of selecting x uniformly at random in S. Let A be a
probabilistic algorithm. We denote with x $← A the process of
running A and assigning the its output to x.

A. Trapdoor q-mercurial commitments

Informally, a trapdoor q-mercurial commitment (qTMC for
brevity) extends the notion of (trapdoor) mercurial commit-
ment, by allowing the sender to commit to an (ordered)
sequence of q messages, rather than to a single one. More
precisely, and like standard (trapdoor) mercurial commit-
ments (whose definition is given in Appendix A), trapdoor q-
mercurial commitments allow for two different decommitting
procedures. In addition to the standard opening mechanism,
there is a partial opening (also referred as tease or soft
open) algorithm that allows for some sort of equivocation.
At committing stage, the sender can decide to produce a
commitment in two ways. Hard commitments should be hiding
in the usual sense, but should satisfy a very strong binding
requirement (that we call strong binding). Informally, strong
binding means that a sender S should be able to open a
commitment only with respect to messages that were in the
“correct” position in the sequence S originally committed
to. More precisely, when opening an hard commitment for
a message m, the sender is required to specify an index
i ∈ {1, . . . , q}, indicating the position of m in the sequence.
In the case of hard commitments, the strong binding property
imposes that the commitment should be successfully opened
and teased to (m, i) only if m was the i-th message in the
sequence S originally committed to. Soft commitments, on the
other hand cannot be opened, but can be teased with respect to
messages belonging to any arbitrary sequence of q messages.

More formally, a trapdoor q-mercurial commitment is de-
fined by the following set of algorithms: (qKeyGen, qHCom,
qHOpen, qHVer, qSCom, qSOpen, qSVer, qFake, qHEquiv,
qSEquiv).
• qKeyGen(1k, q): is a probabilistic algorithm that takes

in input a security parameter k and the number q of
committed values and outputs a pair of public/private keys

4

(pk, tk). This algorithm is usually run by a trusted party
that makes the public key available to all parties that want
to use the scheme.

• qHCompk(m1, · · · ,mq): given an ordered tuple of mes-
sages, qHCom computes a hard commitment C to
(m1, · · · ,mq) using the public key pk and returns some
auxiliary value aux containing all the information used
to generate C.

• qHOpenpk(m, i, aux): let (C, aux) =
qHCompk(m1, · · · ,mq), if m = mi the hard opening
algorithm qHOpenpk(m, i, aux) produces a hard
decommitment π. The algorithm returns an error
message otherwise.

• qHVerpk(m, i, C, π): the hard verification algorithm ac-
cepts (outputs 1) only if π proves that C is created to a
tuple (m1, · · · ,mq) such that mi = m.

• qSCompk(): produces a soft commitment C and an
auxiliary information aux. A soft commitment string C
is created to no specific sequence of messages.

• qSOpenpk(m, i, flag, aux): produces a soft decommit-
ment τ (also known as “tease”) to a message m
at position i. The parameter flag ∈ {H,S} indi-
cates if τ corresponds to either a hard commitment
(C, aux) = qHCompk(m1, · · · ,mq) or to a soft commit-
ment (C, aux) = qSCompk(). The algorithm returns an
error message if C is an hard commitment and m 6= mi.

• qSVerpk(m, i, C, τ): checks if τ is a valid decommitment
for C to m of index i. If it outputs 1 and τ corresponds
to a hard commitment C to (m1, · · · ,mq), then C could
be hard-opened to (m, i), or rather m = mi.

• qFakepk,tk(): takes as input the trapdoor tk and produces
a q-fake commitment C. C is not bound to any sequence
(m1, · · · ,mq). It also returns an auxiliary information
aux.

• qHEquivpk,tk(m1, · · · ,mq, i, aux): the non-adaptive
hard equivocation algorithm generates a hard
decommitment π for (C, aux) = qFakepk,tk() to
the i-th message of (m1, · · · ,mq). The algorithm is non
adaptive in the sense that, for a given C, the sequence
(m1, · · · ,mq) has to be determined once and for all,
before qHEquiv is executed. A q-fake commitment is
very similar to a soft commitment with the additional
property that it can be hard-opened.

• qSEquivpk,tk(m, i, aux): the soft equivocation algorithm
generates a soft decommitment τ to m of position i
using the auxiliary information produced by the qFake
algorithm. We notice that it does not need to have the
entire commitment sequence to be specified in input.

The correctness requirements for trapdoor q-Mercurial com-
mitments are essentially the same as those for “traditional”
commitment schemes. In particular we require that for all pub-
lic keys generated by qKeyGen and ∀(m1, · · · ,mq) ∈Mq , the
following statements are false only with negligible probability.

1) if (C, aux) = qHCompk(m1, · · · ,mq):
qHVerpk(mi, i, C, qHOpenpk(mi, i, aux)) = 1
∀i = 1 . . . q

2) if (C, aux) = qHCompk(m1, · · · ,mq)

qSVerpk(mi, i, C, qSOpenpk(mi, i,H, aux)) = 1
∀i = 1 . . . q

3) if (C, aux) = qSCompk()
qSVerpk(mi, i, C, qSOpenpk(mi, i,S, aux)) = 1
∀i = 1 . . . q

4) if (C, aux) = qFakepk,tk()
qHVerpk(mi, i, C, qHEquivpk,tk(m1, · · · ,mq, i, aux)) =
1 ; qSVerpk(mi, i, C, qSEquivpk,tk(mi, i, aux)) = 1
∀i = 1 . . . q

1) Security: The security properties for a trapdoor q-
mercurial commitment scheme are as follows:
• q-Mercurial binding. Having knowledge of pk it is

computationally infeasible for a PPT algorithm A to
come up with C,m, i, π,m′, π′ such that either one of
the following cases holds:

– π is a valid hard decommitment for C to (m, i) and
π′ is a valid hard decommitment for C to (m′, i),
with m 6= m′. We call such case a “hard collision”.

– π is a valid hard decommitment for C to (m, i) and
π′ is a valid soft decommitment for C to (m′, i),
with m 6= m′. We call such case a “soft collision”.

• q-Mercurial hiding. There exists no PPT
adversary A that, knowing pk, can find a
tuple (m1, · · · ,mq) ∈ Mq for which it can
distinguish (C, {qSOpenpk(mi, i,H, aux)}i=1,...,q)
from (C ′, {qSOpenpk(mi, i,S, aux′)}i=1,...,q),
where (C, aux) = qHCompk(m1, · · · ,mq) and
(C ′, aux′) = qSCompk().

• Equivocations. In the following games A should not be
able to tell apart the “real” world from the corresponding
“ideal” one. The games are formalized in terms of a
challenger that flips a binary coin b ∈ {0, 1}. If b = 0
it gives to A a real commitment/decommitment tuple; if
b = 1 it gives to A an ideal tuple produced using the
fake algorithms.

– q-HEquivocation. The adversary A chooses
a sequence (m1, · · · ,mq) ∈ Mq and gives
it to the challenger. If b = 0 the challenger
computes (C, aux) = qHCompk(m1, · · · ,mq),
πi = qHOpenpk(mi, i, aux) and τi =
qSOpenpk(mi, i,H, aux) ∀i = 1, . . . , q. Otherwise,
if b = 1, it computes: (C, aux) = qFakepk,tk(),
πi = qHEquivpk,tk(m1, · · · ,mq, i, aux) and
τi = qSEquivpk,tk(mi, i, aux) ∀i = 1, . . . , q. Then
the the adversary is given the commitment C and
the openings π1, τ1, . . . , πq, τq for all the chosen
messages.

– q-SEquivocation. In this game the challenger picks
a random bits b $← {0, 1} and proceeds as follows.
If b = 0 it generates (C, aux) = qSCompk()
and gives C to A. Next, A chooses q messages
(m1, . . . ,mq) ∈ Mq , gives them to the challenger
and receives back qSOpenpk(m, i,S, aux) for all
i = 1, . . . , q. If b = 1, A first gets qFakepk,tk(),
then it chooses (m1, . . . ,mq) ∈ Mq , gives them to
the challenger and gets back qSEquivpk,tk(m, i, aux)
for all i = 1, . . . , q.

5

At the end of each game A outputs a bit b′ as its guess
for b and we define its advantage as AdvX−equiv(A) =
2 · Pr[b′ = b] − 1 (for X=H, S respectively). Then we
say that such properties hold is no PPT adversary A has
non-negligible advantage in any of the above games.

As for the case of trapdoor mercurial commitments (see
[4]) it is easy to see that the q-mercurial hiding is implied
by the q-HEquivocation and q-SEquivocation. Moreover if a
scheme is proper in the sense of [4], then the q-HEquivocation
property can be simplified by giving to the adversary only hard
openings since the soft ones are given implicitly. Indeed, we
recall that a mercurial commitment scheme is said proper if
the soft opening is a proper subset of the hard opening.

RELATION TO THE DEFINITION IN [5]. In this work we
slightly change the definition of equivocations with respect to
the one given in [5]. The first modification is in that here the
adversary of the hiding and equivocations games is allowed
to see the openings for all the q indices. Indeed we noticed
that the previous definition (where the adversary is given the
opening for only one index) is not sufficient for proving the
zero-knowledge property in the generic construction of ZKS
from qTMCs.

Then we propose a new q-HEquivocation property instead
of the previous q-HHEquivocation and q-HSEquivocation. The
point is that the previous definition allows to build ZKS only
if the scheme is proper.5 More precisely, from a theoretical
point of view, it does not change much as any non-proper
scheme can be converted into a proper one by defining the
hard opening as the hard opening plus the soft opening.
Though our construction of section IV is proper, we prefer to
have a statement valid for all kinds of schemes, also because
the generic conversion sketched above, may not be efficient.
In contrast our new definition allows to build ZKS directly
without any requirement on the properness of the qTMC
scheme.

Finally we remark that the same observation can be made
in the case of standard mercurial commitments. We propose
new equivocations definitions also for them and we discuss
the relationship with the previous definition in Appendix A.

B. Generic construction of trapdoor q-mercurial commitments

In this section we show that trapdoor q-mercurial com-
mitments exist under the very basic assumption that one-
way functions exist. Indeed, from the result of Catalano et
al. [4] we know that mercurial commitments exist assuming
the existence of one-way functions in the common reference
string model.

Therefore a trivial solution is to define a trapdoor q-
mercurial commitment as an ordered sequence of q mercurial
commitments. In order to commit to a sequence of messages
m1, . . . ,mq the committer creates ∀i = 1, . . . , q Ci as the
commitment to message mi using the mercurial commitment
scheme and then defines C = (C1, . . . , Cq). Later, when it
wants to open C to m at position j, it opens Cj to m. It is

5While such statement may be unclear at this stage, it will become more
clever when looking at the proof in Section III-B.

easy to see that this q-mercurial commitment scheme is secure
if so is the underlying scheme. Therefore, putting together
this scheme and the result of Catalano et al. [4] we have that
trapdoor q-mercurial commitments can be built assuming only
the existence of one-way functions in the common reference
string model.

It is clear that the solution given above is not very efficient
since the size of the commitment string is linear in q. A
more space-efficient generic construction can be instantiated
assuming the existence of collision resistant hash functions.
To commit to a sequence of messages use the mercurial
commitment scheme to create q commitments C1, . . . , Cq and
then construct a Merkle tree upon the q commitments as
leaves. In particular observe that the path from the root until
each leaf uniquely defines its position in the sequence. The
commitment C will be the root of the tree. Later, to open C
to m at position j, open Cj to m and then “open” the path
from Cj until the root. In this case the commitment string is
constant and independent from q, while the opening cost is
O(logq).

C. Zero-Knowledge Sets

Zero-Knowledge sets [20] allow one to commit to some
secret set S and then to, non interactively, produce proofs of
the form x ∈ S or x /∈ S. This is done without revealing
any further information (i.e. that cannot be deduced by the
statements above) about S, not even its size. Following the
approach of [20], here we focus on the more general notion of
zero-knowledge elementary databases (EDB), since the notion
of Zero-Knowledge Sets is a special case of zero-knowledge
EDBs (see [20] for more details about this). Let [D] be the
set of keys associated to a database D. We assume that [D]
is a proper subset of {0, 1}∗. If x ∈ [D], we denote with
y = D(x) its associated value in the database D. If x /∈ [D]
we let D(x) = ∅. An EDB system is formally defined by the
following tuple of algorithms (Setup,P1,P2,V):

• Setup(1k) takes in input the security parameter k and
generates the common reference string CRS together
with some trapdoor information tk. This algorithm is run
by some trusted party that makes CRS available to all
parties that will be going to use the EDB system.

• P1(CRS,D), the committer algorithm, takes in input the
common reference string CRS, a database D and outputs
a public key ZPK and a secret key ZSK.

• P2(CRS,ZPK,ZSK, x) On input the common refer-
ence string CRS, the public key ZPK, the secret key
ZSK (which implicitly contains a description of D) and
an element x, the prover algorithm produces a proof πx
of either D(x) = y or D(x) = ∅.

• V(CRS,ZPK, x, πx) The verifier algorithm outputs y if
D(x) = y, ∅ if D(x) = ∅ or ⊥ if the proof πx is not
valid.

We say that (Setup,P1,P2,V) is a zero-knowledge EDB if
it satisfies the following properties:

6

1) Completeness. ∀ databases D and ∀x ∈ [D]

Pr


(CRS, tk)

$← Setup(1k);

(ZPK,ZSK)
$← P1(CRS,D);

πx ← P2(CRS,ZPK,ZSK, x) :
V(CRS,ZPK, x, πx) = D(x)

 = 1− ε(k)

where ε(k) is negligible in k. Informally, this means that
if D(x) = y then the prover is able to convince a verifier
of this fact with overwhelming probability.

2) Soundness. A dishonest prover should not be able to
prove false statements even if it provides a maliciously
chosen public key. More formally, ∀x ∈ {0, 1}∗ and ∀
efficient algorithms P ′

Pr


(CRS, tk)

$← Setup(1k);
(ZPK ′, x, πx, π

′
x)← P ′(CRS) :

V(CRS,ZPK ′, x, πx),V(CRS,ZPK
′, x, π′x)

6= ⊥ ∧ V(CRS,ZPK ′, x, πx) 6=
V(CRS,ZPK ′, x, π′x)


is negligible in k.

3) Zero-Knowledge. This property means that a veri-
fier learns only the values D(x) during its inter-
action with the prover. This is formally modeled
by saying that there exists a simulator SIM =
(SimSetup,SimCom,SimProve) such that ∀k ∈ N , for
all PPT adversaries A and for all efficiently computable6

(adversarially chosen) databases D, the views of the ad-
versary A in the following games are indistinguishable.
• Game Real. In this game a common reference string
CRS is generated according to the Setup algorithm
and the security parameter and A is allowed to
choose a database D and give it to the prover. Then
the adversary receives a public key ZPK from the
prover (computed using P1). Finally it adaptively
chooses a sequence of database keys x1, . . . , xn for
which it wants to see proofs for the correct values in
D: D(x1), . . . , D(xn). Thus A’s view in this game
is:

V iew(k) =



(CRS, tk)
$← Setup(1k);

(D, st)
$← A(CRS, tk);

(ZPK,ZSK)
$← P1(CRS,D);

(x1, st1)
$← A(st, ZPK);

πx1 ← P2(CRS,ZSK, x1) :

(x2, st2)
$← A(st1, πx1);

πx2 ← P2(CRS,ZSK, x2);
...

: CRS, tk, ZPK, x1, πx1 , x2, πx2 . . .


• Game Ideal. In this game we consider the case

of an adversary A interacting with an ideal prover
SIM. SimSetup outputs a common reference string
CRS′ together with a trapdoor information tk. As
in the real game, the adversary, after receiving

6Chase et al. [6] pointed out the necessity of quantifying only on efficiently
computable databases in order to achieve computational ZK. For example
a database may contain information needed to break the computational
assumption used or to distinguish the generated transcript. In this case an
adversary will be able to distinguish the real prover from the simulator.

(CRS′, tk), chooses a database D, but now the
simulator algorithm SimCom generates a “fake”
public key ZPK ′ without the knowledge of D.
Then the adversary adaptively chooses a sequence
of elements x1, . . . , xn for which it wants to see
the correct proofs. The queries are answered by
SimProve that is assumed to have access to an
oracle that, queried on a key x, returns the correct
value associated to x in the database D if x ∈ [D],
otherwise it returns ⊥. We stress about the fact that
the simulator is allowed to query the database oracle
only on the same keys queried by the adversary. The
view of A in this game is:

V iew′(k) =



(CRS′, tk)
$← SimSetup(1k);

(D, st)
$← A(CRS′, tk);

(ZPK′, ZSK′)
$← SimCom(CRS′, tk);

(x1, st1)
$← A(st, ZPK′);

π′x1 ← SimProveD(x1)(tk, ZSK′, x1) :

(x2, st2)
$← A(st1, π′x1);

π′x2 ← SimProveD(x2)(tk, ZSK′, x2);
...

: CRS′, tk, ZPK′, x1, π
′
x1 , x2, π

′
x2 , . . .


Notice that we consider a notion of completeness that is less

restrictive than the one suggested in [20]. Indeed, the definition
given in [20] requires perfect completeness. Informally, such
a requirement, prescribes that completeness is satisfied with
probability 1 (rather than 1 − ε, as in our case). We prefer
to consider the less restrictive notion as it allows for more
efficient solutions in practice.

III. ZERO KNOWLEDGE EDB FROM TRAPDOOR
Q-MERCURIAL COMMITMENTS

In this section we describe a construction of zero-knowledge
EDB, from trapdoor q-mercurial commitments (defined in Sec-
tion II-A), trapdoor mercurial commitments (see Appendix A)
[4], [6] and collision resistant hash functions. The construction
is very simple, as it generalizes easily from the original [6],
[20] constructions. Still, it plays an important role in our quest
for efficient zero knowledge sets, as it allows us to concentrate
solely on the problem of realizing efficient qTMCs.

A. Intuitive construction

Assume we want to commit to a database D with keys of
length k. We associate each key x to a leaf in a q-ary tree
of height k. Thus x can be viewed as a number representing
the labeling of the leaf in q-ary encoding (see the example
in Figure 1). Since the number of all possible keys is qk, to
make the committing phase efficient (i.e. polynomial in k) the
tree is pruned by cutting those subtrees containing only keys
of elements not in the database. The roots of such subtrees
are kept in the tree (we call them the “frontier”). The internal
nodes in the frontier are “filled” with soft commitments. The
remaining nodes are filled as follows. Each leaf contains
an hard commitment (computed using the standard trapdoor
mercurial commitment scheme) of a value nH(x) related to

7

Fig. 1. A 3-ary tree of height 3 before and after a query to the database
key 311. Each node of the tree contains a mercurial commitment: the label H
is for hard commitments, S for the soft ones. Moreover the squares represent
q-commitments, while the circles represent standard commitments. If the set
of database keys is S = {121, 122, 123, 221}, the darker nodes are those
belonging to a path from the root to an element in the set. The light shaded
nodes are the frontier.

D(x)7. Each internal node contains the hard q-commitment
to the hashes of the values contained in its q sons. The q-
commitment contained in the root of the tree is the public key
of the zero-knowledge EDB.

When the prover P is asked for a proof of an element x ∈ D
(for instance such that D(x) = y), it proceeds as follows. It
exhibits hard openings for the commitments contained in the
nodes in the path from the root to the leaf x. More precisely,
for each level of the tree, it opens the hard q-commitment
with respect to the position determined by the q-ary encoding
of x for that level. Queries corresponding to keys x such that
D(x) = ∅ are answered as follows. First, the prover generates
the possibly missing portion of the subtree containing x. Next,
it soft opens all the commitments contained in the nodes in
the path from x to the root. The soft commitments stored in
the frontier nodes are then teased to the values contained in
its newly generated children.

It is easy to see that the completeness property follows from
the completeness of the two commitment schemes used. Sim-
ilarly, the binding properties of the two commitment schemes,
together with the collision resistance of the underlying hash
function, guarantees that (1) no hard commitment can be
opened to two different values, and (2) no hard commitment
can be opened to a value and then teased to a different one.

7More precisely nH(x) is the hash of D(x) if x is in the database and 0
otherwise.

Finally the zero-knowledge property follows from the fact
that both the two commitments schemes are hiding and equiv-
ocable (the fake commitments and fake openings produced by
the simulator are indistinguishable from the commitments and
openings produced from a real prover).

A detailed description of the construction sketched above,
together with a complete security proof, is given in the
following section.

B. Detailed construction

Here we give the details of our construction of zero-
knowledge EDB from trapdoor q-mercurial commitments (see
Section II-A), trapdoor mercurial commitments (Appendix A)
[4], [6] and collision resistant hash functions.

Let Tk be the complete q-ary tree of height k, with qk

leaves. Let Uk be a universe of size qk (i.e. {1, · · · , q}k). We
build its associated tree Tk by labelling its nodes with the q-ary
encoding of the elements x ∈ Uk, so that all elements of Uk are
leaves in Tk. Thus ε is the label for the root. If v is a non-leaf
node, then v1, · · · , vq are its sons. If S ⊆ Uk we consider two
subsets of Tk: TREE(S) and FRONTIER(S). TREE(S)
is the subtree of Tk containing all the nodes in the paths from
the leaves in S to the root (the darker nodes in Figure 1).
FRONTIER(S) = {v : v /∈ TREE(S) ∧ parent(v) ∈
TREE(S)} (the light shaded nodes in Figure 1).

We show our construction by describing its algorithms
(Setup,P1,P2,V).

Setup(1k). Given a security parameter k, it constructs the
common reference string CRS as follows:
• it generates a pair of (matching) keys (PK, TK) =

qKeyGen(1k) for a trapdoor q-mercurial commitment
scheme QC;

• it generates a pair of (matching) keys (PKM,TKM) =
KeyGen(1k) for a trapdoor mercurial commitment
scheme C;

• it chooses a collision-resistant hash function H;
• finally it sets CRS = (PK,PKM,H) and tk =

(TK, TKM).

THE DATABASE COMMITTER P1(CRS,D).
1) Let S be the output space of H , when com-

puted over the support [D] of D, (i.e. S =
H([D])). First, the committer constructs the tree T =
TREE(S)

⋃
FRONTIER(S).

2) ∀ leaf-nodes H(x) it sets:

nH(x) =

{
H(y) if D(x) = y,

0 if D(x) = ∅.

It computes a hard commitment (CH(x), auxH(x)) =
HComPKM (nH(x)) and sets mH(x) = H(CH(x)).

3) ∀ internal nodes u such that u ∈ FRONTIER(S) :
(Cu, auxu) = qSComPK().

4) ∀ internal nodes u ∈ TREE(S): (Cu, auxu) =
qHComPK(mu1, · · · ,muq).

5) It stores in each node u the auxu elements produced in
the steps before.

8

6) ∀ internal nodes u ∈ T\{ε} : mu = H(Cu).
7) The committer outputs the commitment of the root as

public key: ZPK = (Cε). The secret key ZSK contains
all the stored elements.

THE DATABASE PROVER P2(CRS,ZSK, x). The prover al-
gorithm produces a proof πx of the database value of x. If
u, v are two nodes of the tree such that v is a son of u then
we write i = indexu(v) to refer the position i ∈ {1, · · · , q}
of v among the sons of u. We distinguish between two cases:

1) D(x) = y. The proof πx contains the commitments and
the hard openings in the path from the leaf-node H(x)
toward the root:{
y, CH(x), HOH(x) = HOpenPKM (H(y), auxH(x)), {Cu,

qHOu = qHOpenPK(mv, i, auxu)}v=H(x),parent(x),··· ,ε−1

}
with u = parent(v), i = indexu(v).

2) D(x) = ∅. The prover first checks if the leaf node H(x)
is in the tree T constructed by P1. If H(x) /∈ T , let w ∈
FRONTIER(S) be the root of the missing subtree
of Tk containing H(x). The prover builds the subtree
rooted in w using the same algorithm as in P1. The proof
πx contains the commitments and the soft openings in
the path from H(x) toward the root ε:{
CH(x), SOH(x) = SOpenPKM (0, S, auxH(x)), {Cu, qSOu

= qSOpenPK(mv, i,H/S, auxu)}v=H(x),parent(x),··· ,ε−1

}
with u = parent(v), i = indexu(v).

THE DATABASE VERIFIER V(CRS,ZPK, x, πx). We con-
sider two cases (depending on the type of proof received):

1) D(x) = y.
a) Check if HVerPKM (H(y), CH(x), HOH(x)) = 1.
b) Compute mH(x) = H(CH(x)).
c) Let v = parent(H(x)) and i such that H(x) = vi.

Check if qHVerPK(mH(x), i, Cv, qHOv) = 1.
d) compute mv = H(Cv) and iterate as above for

u = parent(v), · · · , ε− 1.
e) Check if qHVerPK(mu, i, ZPK, qHOε) = 1,

where u = i is the first node in the path from
the root toward H(x).

f) If none of the tests above fails, output y, otherwise
output ⊥.

2) D(x) = ∅.
a) Check if SVerPKM (0, CH(x), SOH(x)) = 1
b) Compute mH(x) = H(CH(x)).
c) Let v = parent(H(x)) and i such that H(x) = vi.

Check if qSVerPK(mH(x), i, Cv, qSOv) = 1.
d) Compute mv = H(Cv) and and iterate as above

for u = parent(v), · · · , ε− 1.
e) Check if qSVerPK(mu, i, ZPK, qSOε) = 1,

where u = i is the first node in the path from
the root toward H(x).

f) If none of the tests above fails output ∅, else output
⊥.

1) Proof of security: The following theorem proves that the
scheme proposed above is a zero-knowledge EDB. The proof
may be seen as an extension of the one given in [6] (that
supports binary trees and mercurial commitments) to the case
of q-ary trees and qTMCs.

Theorem 1: Assuming that QC is a trapdoor q-mercurial
commitment scheme, C is a trapdoor mercurial commitment
scheme and H is a family of collision resistant hash functions,
the scheme (Setup,P1,P2,V) presented above is a zero-
knowledge EDB.

Proof: To prove the theorem we prove separately that
the scheme satisfies completeness, soundness and the zero-
knowledge requirement.

Completeness. We show that completeness is satisfied with
overwhelming probability 1− ε(k). Such ε(k) comes from the
probability of finding a collision in the hash function H . It is
easy to check that all tests made by the verifier algorithm are
valid for the construction of P1 and P2 and the completeness
of both the commitment schemes C and QC.

Soundness. We assume there exists an adversary A that
breaks the soundness of our scheme with non-negligible
advantage ε. Then we can build a simulator B that, with
non-negligible advantage, uses A to break either the mercu-
rial binding of the mercurial commitment scheme or the q-
mercurial binding of the q-mercurial commitment scheme or
the collision resistance of the hash function.
B receives in input:
• the public key PKM for a mercurial commitment

scheme;
• the public key PK for a q-mercurial commitment

scheme;
• the description of a hash function H .

B constructs the common reference string CRS =
(PK,PKM,H) from the received values and gives it
to A. With probability ε the adversary outputs a tuple
(ZPK ′, x, πx, π

′
x) such that

V(CRS,ZPK ′, x, πx),V(CRS,ZPK
′, x, π′x) 6= ⊥

and V(CRS,ZPK ′, x, πx) 6= V(CRS,ZPK ′, x, π′x).
Notice that the proofs πx and π′x have to be different (as

they prove different statements). Still they must be both valid.
Thus the two proofs have to be the same close to the root, but
they must “fork” at some point. This leads to the following,
mutually exclusive cases:

1) the commitments are the same but where the forking
occurs, they are opened to different values. More specif-
ically we distinguish between two subcases, one for the
leaves and another for internal nodes:

a) in the leaf-nodes: CH(x) = C ′H(x) ∧ (y 6= y′ ∨
πx is of type D(x) = y and π′x of type D(x) =
∅). In such case the simulator can break either the
collision resistance of the hash function (if H(y) =
H(y′)) or the mercurial binding of the mercurial
commitment scheme C.

b) for some internal node u: mui 6= m′ui ∧ Cu = C ′u
and πu is a hard opening for Cu to (mui, i) and π′u

9

is a hard or soft opening for Cu to (m′ui, i). In this
case we have a hard or soft collision that breaks
the q-mercurial binding property of the q-mercurial
commitment scheme QC.

2) Where the forking occurs, the commitments are the
same, they open to identical values, but the messages
were originally different. This means that we found a
collision in the hash function:

a) in the leaves: y 6= y′ ∧H(y) = H(y′),
b) for some internal node u: Cu 6= C ′u ∧ mu =

H(Cu) = H(C ′u) = m′u;

Zero-Knowledge. In order to show that our generic con-
struction satisfies the zero-knowledge property we first de-
scribe a simulator SIM = (SimSetup,SimCom,SimProve) for
the ideal game.

SimSetup is exactly the same as the real Setup algorithm.
SimCom runs (Cε, auxε) = qFakePK,TK() and sets ZPK =
Cε, ZSK = auxε.

In order to simulate the first proof for a queried element x,
the SimProve algorithm proceeds as follows:

1) it queries the database oracle on x to obtain the correct
value D(x);

2) it sets

nH(x) =

{
H(y) if D(x) = y,

0 if D(x) = ∅;

3) it makes a fake commitment CH(x) and sets mH(x) =
H(CH(x));

4) it creates a fake-commitment for each of the q − 1
siblings of H(x) and then computes the corresponding
hashes;

5) it creates a fake q-commitment for the parent node of
the q values generated in the two steps before;

6) it creates q−1 q-fake-commitments, one for each sibling
of the node created in the step before;

7) it repeats step 5,6 until the root.
The proof πx contains the hard (respectively soft) equivo-
cations of the commitments in the path from H(x) to the
root node. Moreover SimCom updates the secret key with the
values of the newly generated nodes.

When SimProve receives subsequent queries, it searches for
the last node w in the path from the root to H(x) present
in the currently build tree. Then it works as above to build
the nonexistent subtree rooted in w. As in the previous case,
the proof πx will contain hard (or soft) equivocations of the
commitments in the path from H(x) to the root.

Once we have defined the simulator for the ideal game we
will prove that this game is indistinguishable from the real
one as follows. Let us call GR the Game Real and GI the
Game Ideal played by our simulator. We recall that to formally
prove the zero-knowledge property we have to show that for
all adversaries A the view produced by A in Game Real is
indistinguishable from the one generated by A in Game Ideal
(for brevity we write it as GR ≈ GI). We prove this with a
fairly standard hybrid argument where we define intermediate
games in which we change step-by-step our simulator in

the way it produces commitments and openings until it will
behave like a real prover. Next we show that the difference
between two such subsequent games can be reduced to the
equivocation properties of the commitment scheme. Finally,
since the number of games is at most polynomial, we will
obtain the indistinguishability of the two main games GR and
GI .

Given a database D, let Q be the number of nodes in the
tree T = TREE(S)

⋃
FRONTIER(S) where S is defined

as before (i.e. S = H([D])). Assuming a level-ordering of T ,
for i = 1, . . . , Q we define Ti to be the tree containing the first
i nodes of T (i.e. T0 = ∅ and TQ = T). Now consider the ideal
game GI and define Game Gi to be GI modified such that
SimCom receives in input Ti and both SimCom and SimProve
proceed as follows. All the commitments (and openings) of
all the tree nodes revealed by Ti are created as in the case
of a real prover (i.e. by using the real algorithms). Instead
the remaining ones contain commitments created using the
fake algorithms. Then, starting from GQ we can define games
GQ,j for j = 1, . . . , d where d is the number of keys in D.
The game GQ,j is the same as GQ except that the simulator is
also given the database values of the first j keys in D. Clearly
we have that GI = G0 and GR = GQ,d.

Now we prove the following lemma to show that the
views of two adjacent games are indistinguishable, namely
Gi ≈ Gi+1 ∀i = 0, . . . , Q− 1 8. More formally, let D be an
algorithm that takes in input a view generated by a run of an
adversary A in our games and outputs 0 or 1 (we write it as
D(GAi)).

Lemma 1: If QC is a trapdoor q-mercurial commitment
scheme, then for all adversaries A it holds:

|Pr[D(GAi) = 1]− Pr[D(GAi+1) = 1]| ≤ ε(k)

where ε is a negligible function.
Proof:

Notice that for a fixed database D and a set of adversary’s
queries x1, . . . , xn the two games Gi and Gi+1 differ only
in a specific node u: for the algorithms (the real ones or
simulator’s) used to create the commitment Cu and to produce
the related openings.

We show how to convert an efficient distinguisher D into
an algorithm B that breaks one of the equivocation properties
of the commitment scheme.

Given a database D we distinguish for the node u between
two possible cases such that at least one of them occurs with
probability at least 1/2:

1) in the real game u would contain a soft commitment,
2) in the real game u would contain an hard commitment.

In the first case a distinguisher D for the two games Gi and
Gi+1 can be reduced to an adversary for the q-SEquivocation
while in the second case we can make a reduction to q-
HEquivocation.

8The lemma takes into account only the case of q-mercurial commitments.
However it is easy to see that the same argument can be extended to standard
mercurial commitments for the remaining d games concerning the last level
of the tree.

10

Before starting the simulation B makes a random guess
about one of the two cases and then runs the appropriate
simulation as follows.

CASE 1. In this case B has guessed that u will contain a
soft commitment and it plays the q-SEquivocation game. Thus
B receives a pair of keys (PK, TK) for the q-mercurial
commitment scheme and a commitment C. It generates a
pair of keys (PKM,TKM) for the standard mercurial com-
mitment and proceeds as follows. Operations for all nodes
v 6= u are simulated using (PK, TK) and the appropriate
algorithms according to their position in the tree. When B
gets to create Cu, if (according to D) it has to be an hard
commitment, B aborts and outputs a random bit. Otherwise it
sets Cu = C. Then B generates Cu1, . . . , Cuq and gives them
to its challenger to get back a soft opening of Cu for each of
these values. Such openings will be later used by B to produce
those proofs that “pass through” u. It is easy to see that if the
q-SEquivocation challenger has chosen b = 1 (i.e. C is fake),
then B is simulating game Gi, otherwise it simulates Gi+1.

Let V be the view produced in this simulation. At the end
B runs b′ ← D(V) and outputs the same b′.

CASE 2. In this game B has guessed that u will contain an hard
commitment and it plays the q-HEquivocation game. So B
receives a pair of keys (PK, TK) for the q-mercurial commit-
ment scheme. It also generates a pair of keys (PKM,TKM)
for the standard mercurial commitment and proceeds as fol-
lows. Operations for all nodes v 6= u are simulated using
PK, TK and the appropriate algorithms according to their
position in the tree. When B gets to create Cu, it first generates
Cu1, . . . , Cuq using the fake algorithm qFakePK,TK() and
gives these values to its challenger. B gets back a commitment
C and the hard and soft openings πu1, τu1, . . . , πuq, τuq of C
to Cu1, . . . , Cuq respectively. It sets Cu = C and uses the
received openings to produce those proofs that “pass through”
u. It is easy to see that if the q-HEquivocation challenger has
chosen b = 1, then B is simulating game Gi, otherwise it
simulates Gi+1.

Let V be the view produced in this simulation. When the
game is over B runs b′ ← D(V) and outputs the same bit b′.

In conclusion we have that∣∣∣Pr[D(GAi) = 1]− Pr[D(GAi+1) = 1]
∣∣∣ ≤

1
2Adv

S−Equiv(B) + 1
2Adv

H−Equiv(B)

Applying the result of Lemma 1 to all the games defined
before we finally have that

∣∣∣Pr[D(GRA)]− Pr[D(GIA)]∣∣∣ is
negligible.

IV. TRAPDOOR q-MERCURIAL COMMITMENT BASED ON
SDH

In this section we show an efficient construction of a
trapdoor q-mercurial commitment scheme QC.

Our construction relies on the Strong Diffie-Hellman as-
sumption (SDH for short), introduced by Boneh and Boyen in
[3]. Informally, the SDH assumption in bilinear groups G1, G2

of prime order p states that, for every PPT algorithm A and
for a parameter q, the following probability is negligible:

Pr[A(g1, gx1 , g
(x2)
1 , · · · , g(x

q)
1 , g2, g

x
2) = (c, g

1/(x+c)
1)].

If we suppose that G(1k) is a bilinear group generator which
takes in input a security parameter k, then (asymptotically)
the SDH assumption holds for G if the probability above is
negligible in k, for any q polynomial in k (see [3] for the
formal definition).

The SDH assumption obviously implies the discrete log-
arithm assumption (i.e. if the former holds, so has to do
the latter). A reduction in the other direction, however, is
not known. Recently, however, Cheon [7] proved that, for
many primes p, the q-Strong Diffie Hellman problem has
computational complexity reduced by O(

√
q) with respect to

that of the discrete logarithm problem (in the same group).

THE NEW SCHEME. Now we describe our proposed trap-
door q-Mercurial Commitment scheme, in terms of its
component algorithms (qKeyGen, qHCom, qHOpen, qHVer,
qSCom, qSOpen, qSVer, qFake, qHEquiv, qSEquiv), as de-
fined in Section II-A.

The technical construction of the proposed scheme builds
upon the simulator described in the security proof of the weak
signature scheme given in [3].

In what follows H denotes a family of collision resistant
hash functions whose range is Zp.

• qKeyGen(1k, q): the key generation algorithm runs a
bilinear group generator G(1k) for which the SDH as-
sumption holds [3] to get back the description of groups
G1, G2, GT and a bilinear map e : G1×G2 → GT . Such
groups share the same prime order p.
The description of the groups contains the group gen-
erators: g1 ∈ G1, g2 ∈ G2. The algorithm proceeds
by picking a random integer x ← Z∗p and it sets
A1 = gx1 , · · · , Aq = gx

q

1 , h = gx2 . Next, it chooses a
collision resistant hash function H from H.
The public key is set as PK =
(g1, A1, · · · , Aq, g2, h,H), while the trapdoor is
TK = x:

• qHComPK(m1, · · · ,mq): the hard commitment algo-
rithm randomly selects α,w ← Z∗p and computes Ci =
H(i||mi),∀i = 1, · · · , q (the symbol || denotes concate-
nation). Next, it defines the polynomial

f(z) =

q∏
i=1

(z + Ci) =

q∑
i=0

(βiz
i)

and sets g′1 = (
∏q
i=0A

αiβi
i)w = g

f(αx)w
1 and g′2 = hα.

In the unlucky case that either g′1 = 1 or g′2 = 1, then
one simply retries with another random α.
Thus, letting γ = αx, we have g′1 = g

f(γ)w
1 and g′2 =

hα = gγ2 .
The commitment is (g′1, g

′
2). The auxiliary information is

aux = (α,w,m1, · · · ,mq);
• qHOpenPK(m, j, aux) outputs π =

(α,w,m1, · · · ,mj−1,mj+1, · · · ,mq);

11

• qHVerPK(m, j, C, π) computes the q − 1 terms Ci =
H(i||mi) ∀mi ∈ π and Cj = H(j||m). Next, it defines
the polynomial f(z) =

∏q
i=1(z + Ci) and computes the

βi coefficients as above.
Checks if g′1 = (

∏q
i=0A

αiβi
i)w and g′2 = hα. If both

tests succeed, it outputs 1;
• qSComPK(): picks α′, y ← Z∗p at random, sets

g′1 = gα
′

1 , g′2 = gy2

and outputs (g′1, g
′
2) and aux = (α′, y);

• qSOpenPK(m, j, flag, aux): if flag = H the algorithm
computes Ci = H(i||mi),∀i = 1, · · · , j−1, j+1, · · · , q,
Cj = H(j||m), and sets

fj(z) =
f(z)

(z + Cj)
=

q∏
i=1∧i6=j

(z + Ci) =

q−1∑
i=0

δiz
i

Next, it computes σj = (
∏q−1
i=0 A

δiα
i

i)w = g
f(γ)w
γ+Cj

1 =

(g′1)
1

γ+Cj . The output is σj .

If flag = S the algorithm computes Cj = H(j||m) and
outputs σj = (g′1)

1
y+Cj ;

• qSVerPK(m, j, C, τ): the soft verification algorithm
takes in input a message m and an index j ∈ {1, · · · , q}.
It computes Cj = H(j||mj), and checks if

e(σj , g
′
2g
Cj
2) = e(g′1, g2).

If this is the case, it outputs 1;
• qFakePK,TK(): the fake commitment algorithm is the

same as qSCom;
• qHEquivPK,TK(m1, · · · ,mq, j, aux): the non-adaptive

hard equivocation algorithm uses the trapdoor key TK to
hard open a fake commitment (which is originally a com-
mitment to nothing). It computes Ci = H(i||mi),∀i =
1, · · · , q and constructs the polynomial

f(z) =

q∏
i=1

(z + Ci) =

q∑
i=0

βiz
i.

It sets α = y
x , w = α′

f(y) and outputs π =

{α,w,m1, · · · ,mj−1,mj+1, · · · ,mq};
• qSEquivPK,TK(m, j, aux): the soft equivocation algo-

rithm is the same as qSOpen.

A. Properties of the scheme

The correctness of the scheme can be easily verified by
inspection. With the next theorem we show that the remaining
properties of qTMC are realized as well.

Theorem 2 (Security of qTMC): Assuming that the Strong
Diffie-Hellmann holds for G and H is a family of collision
resistant hash functions, then QC is a trapdoor q-mercurial
commitment scheme.

Proof: To prove the theorem we need to make sure that
the proposed scheme is binding and hiding, in the sense
discussed in Section II-A. We prove each property separately.

q-mercurial binding. To prove the property we need to make
sure that neither hard collisions nor soft ones are possible. We

prove that it is infeasible to find any of such collisions under
the Strong Diffie Hellmann assumption (SDH) for the bilinear
group generator G [3] and the collision resistance of the hash
function H .

Let us first consider soft collisions. Next we describe how
to adapt the same proof for the case of hard collisions.

SOFT COLLISIONS. Assume there exists an adversary AS that
with non-negligible probability ε can find a soft collision. We
show how to build a simulator BS that uses AS to solve the q-
SDH problem, or to break the collision resistance of H , with
probability at least ε/2.
BS receives in input from its challenger a (q + 3)-tuple

(g1, g
x
1 , · · · , gx

q

1 , g2, g
x
2) and the description of a hash function

H . The simulator runs AS on input such values as the
public key of the q-mercurial commitment scheme. Then
with probability ε the adversary outputs (C,m, j, π,m′, τ)
such that: C = (g′1, g

′
2) is a commitment, m 6= m′, π =

(α,w,m1, · · · ,mj−1,mj+1, · · · ,mq) is a valid hard opening
for C to the message m at position j and τ = (σj) is a valid
soft opening for C to m′ of index j. We distinguish two cases:

1) m 6= m′ and Cj = H(j||m) = H(j||m′) = C ′j ;
2) m 6= m′ and Cj 6= C ′j .

At least one of these cases occurs with probability at least ε/2.
In the first case the simulator immediately has a collision for
H . In case 2 we show how to solve the q-SDH problem.

Since qSVerPK(m′, j, C, τ) = 1 we have that
e(σj , g

′
2g
C′j
2) = e(g′1, g2). Moreover, the correct verification

of π implies that g′2 = hα = gγ2 thus σj = (g′1)
1

γ+C′
j .

Using long division we can write the q-degree polynomial
f as f(z) = η(z)(z + C ′j) + η−1 where η(z) =

∑q−1
i=0 ηiz

i

is a polynomial of degree q − 1 and η−1 ∈ Zp. Thus we can

write σj = (g
η(γ)
1 g

η−1

γ+C′
j

1)w. Hence first BS computes:

δ = (σ
1/w
j ·

∏q−1
i=0 A

−ηiαi
i)1/η−1

= (g
η(γ)
1 g

η−1

γ+C′
j

1 g
−η(γ)
1)1/η−1 = g

1
γ+C′

j

1 .

Finally it computes δ∗ = δα = g

α
αx+C′

j

1 = g

1
x+C′

j
/α

1 and C∗ =
C ′j/α. The simulator gives (δ∗, C∗) to its challenger. It is easy
to see that such pair breaks the q-SDH assumption. Thus with
non-negligible advantage ε/2 BS can break either the q-SDH
assumption or the collision resistance of H .

HARD COLLISIONS. Let us now assume there exists an
adversary AH that, given the public key of a q-mercurial
commitment scheme, can find a hard collision with non-
negligible probability ε. Then we construct a simulator BH
that either solves the q-SDH problem or breaks the col-
lision resistance of H with probability at least ε/2. The
simulator BH is similar to the one described above. The
difference is that AH outputs: (C,m, j, π,m′, π′) such that:
C = (g′1, g

′
2) is a commitment, m 6= m′ are two differ-

ent messages, π = (α,w,m1, · · · ,mj−1,mj+1, · · · ,mq) is
a valid hard opening for C to m of index j and π′ =
(α′, w′,m′1, · · · ,m′j−1,m′j+1, · · · ,m′q) is a valid hard open-
ing for C to m′ of index j. Again we consider two cases:

1) m 6= m′ and Cj = H(j||m) = H(j||m′) = C ′j ,

12

2) m 6= m′ and Cj 6= C ′j .
Case 1 is the same as before. In case 2, BH solves the q-
SDH problem as follows. Since qHVerPK(m, j, C, π) = 1 and
qHVerPK(m′, j, C, π′) = 1, it must be the case that α = α′

(α 6= α′, would lead to two different g′2 h
α and hα

′
). More-

over, since the commitment scheme is proper from the valid
hard opening π′ = (α′, w′,m′1, · · · ,m′j−1,m′j+1, · · · ,m′q) for
m′j we can “extract” a valid soft opening for m′j . Thus, using
exactly the same argument described above, we break the SDH
assumption.

Hiding and Equivocation. First notice that our com-
mitment scheme is “proper” in the sense of [4]. In
our scheme, a soft decommitment is implicitly contained
in a hard one. Indeed, given a hard opening π =
(α,w,m1, · · · ,mj−1,mj+1, · · · ,mq) to a message m at po-
sition j and the public key PK, we are able to compute a
valid soft decommitment σj to the message m of index j.

As observed in section II-A, if a scheme is proper, q-
HEquivocation can be simplified by giving to the adversary
only the hard openings for the messages it has chosen. There-
fore, since our scheme has this property, we can apply such
simplification to our proof. In both cases we will show that it
is infeasible for an adversary to distinguish between a real
commitment/decommitment tuple from a fake/equivocation
one.

In the q-HEquivocation game the adversary is asked to tell
apart

{(gf(γ)w1 , gαx2), {(α,w,m1, · · · ,mj−1,mj+1, · · · ,mq)}qj=1}

from

{(gα′1 , gy2), {(α = y
x
, w = α′

f(γ)
,m1, · · · ,mj−1,mj+1, · · · ,mq)}qj=1}

It is easy to see that in both cases α,w are uniformly random
in Z∗p and follow the same distribution. In the first tuple, they
are chosen uniformly and at random, while in the second
tuple they are distributed, respectively, as y and α′, which
were chosen uniformly and at random in Z∗p. Thus the two
distributions are indistinguishable.

The proof of indistinguishability for the q-SEquivocation is
trivial. Indeed, it is easy to see that the elements in the two
distributions

{(gα
′

1 , g
y
2), {σi = (g′1)

1
γ+Ci }i=1,...,q}

{(gα
′

1 , g
y
2), {σi = (g′1)

1
γ+Ci }i=1,...,q}

are distributed in exactly the same manner.

V. EFFICIENCY

In the previous section we proposed a trapdoor q-mercurial
commitment scheme QC based on the Strong Diffie-Hellmann
assumption. In order to build efficient zero knowledge EDB,
we also use a trapdoor mercurial commitment scheme C
based on the Discrete Logarithm constructions given in [6],
[20] (the interested reader is deferred to Appendix B for a
quick description of such a scheme). For our convenience we
consider an implementation of the scheme that allows us to use

some of the parameter already in use for the qTMC scheme.
In particular, we use g1, A1 ∈ G1 from the public key of QC
as the public key for C.

Combining the two schemes as described in Section III, we
obtain an implementation of zero-knowledge EDB (based on
the SDH problem) that allows for proofs that are significantly
shorter than those produced by previous proposals.

In the following we propose a formal analysis of the space
required by the proofs in our ZK-EDB construction and we
compare it with the best known solution. To obtain indications
about the time efficiency of the available schemes, a series of
experimental tests on real implementations have been carried
on. The resulting measures are reported later.

A. Space analysis

Below we compare our proposal with the most efficient (in
terms of space) implementation known so far, namely the one
by Micali et al. [20] (MRK from now on, for short), when
implemented over elliptic curves with short representation (the
best already known solution in terms of space).

We measure efficiency in terms of the space taken by each
proof. For both schemes, we assume that the universe U has
size |U| = 2k = qh and, that q = 2k

′
, for simplicity.

1) Groups used in the comparisons: Following [11] we fix
a security parameter ` = 256 to achieve k = 128 bits of
security. Specifically G1 is realized as a subgroup of points of
an elliptic curve E over a finite field Fp of size p, where p is
an ` bits prime. If e is a parameter called embedding degree,
G2 is a subgroup of E(Fpe) and GT ⊂ E(F∗pe). In particular
we consider elliptic curves with embedding degree e = 12
and CM discriminant D = −3. As suggested in [11], for the
case of Type 3 groups (see [11] for details), such parameters
enable to obtain elements of G2 that have size twice the size
of elements of G1.

2) Bandwidth analysis: A proof of membership in our
scheme contains: 1 mercurial hard-commitment and the related
hard-opening for the leaf (we do not count the eventual
associated value) together with (h − 1) q-mercurial hard-
commitments and h q-mercurial hard-openings (one for each
level above the leaves, but the commitment is not necessary
for the root). In this analysis we count the space in term of
elements9 of G1: a mercurial hard-commitment, as well as the
related hard-opening, requires 2 elements, a q-mercurial hard-
commitment counts as 3 elements and the related hard-opening
requires 2 elements with additional (q − 1) elements for the
hash values of the sibling commitments. In this way a proof of
membership in our scheme requires h(q+4)+1 elements. The
proof of non-membership has the same kind of components
but in the “soft” version: 1 mercurial soft-commitment (2
elements), 1 mercurial soft-opening (1 element), (h − 1) q-
mercurial soft-commitment (3 elements for each) and h q-
mercurial soft-opening (1 element for each). The total is 4h
elements.

9We assume each element has size `. This is because, the size of each
element in G2 is twice that of an element in G1. Thus whenever an element
in G2 is considered, this counts as two elements in G1.

13

q Membership Non-membership
2 769 512
4 513 256
8 513 170.7

16 641 128
32 922.6 102.4
64 1451.7 85.3
128 2414.7 73.1
256 4161 64

TABLE I
SPACE REQUIRED BY PROOFS, IN OUR SCHEME (BEST VALUES IN BOLD)

In MRK’s scheme a proof of membership includes 2 mer-
curial hard-commitments (one for the node on the path and
one for the brother) for each level different than the root (so
k levels) and 1 mercurial hard-opening for each possible level
(so k + 1). The total is 6k + 2 elements. The “soft” versions
of such components in a proof of non-membership require a
total of 5k + 1 elements.

In both the schemes each element has size ` but, for our
construction, we let q vary. For such a choice of parameters
we obtain the following results.

The scheme of Micali et al. requires 770 elements for proofs
of membership and 641 for proofs of non-membership. Results
for our scheme are summarized in Table I.

Notice that our scheme produces proofs of non-membership,
that are always much shorter than the corresponding MRK
proofs. The space required by our proofs of membership, on
the other hand, compares favorably to MRK scheme only until
q ≤ 16, it gets slightly worse for q = 32, and much worse for
larger values of q. Thus, the choice of q = 8 leads to proofs
of membership that are (approximately) 33% shorter, and to
proofs of non membership that are almost 73% shorter than
MRK!

Notice that such a choice of q (i.e. q = 8) keeps the scheme
practical also in terms of length of the common reference
string. Notice also that, according to our present knowledge
of the SDH problem, it seems reasonable to consider the
same security parameter for our scheme and for the MRK
implementation. This is because Cheon [7] attack requires q
to be an upper-bound to a factor of either p − 1 or p + 1
in order to be effective. If one sets q = 8, as suggested in
the table above, this would imply that one should increase the
key size of at most 2 bits in the worst case. Thus using the
same security parameter for both ours and MRK seems to be
reasonable for all practical purposes.

B. Computational experiments

For the sake of completeness and to get indications about
the time efficiency, a series of computational experiments have
been carried out. We consider three possible EDB construc-
tions: the original MRK construction on a subgroup of residue
classes of integers modulo a safe prime (MRK-MOD, in the
follow), the same construction over elliptic curves (MRK-
ECC, for short) and our construction using qTMC over the
same elliptic curves.

1) Implementation details: The schemes have been im-
plemented in language C using the GNU-MP v.4.2.4 and
PBC v.0.4.18 libraries [13], [25]. All the codes share the
same level of optimization, using pre-computation to speed-
up the operations where it is possible10. As in the previous
analysis, the chosen security parameter is ` = 256 to achieve
k = 128 bits of security. As recommended in [23], the MRK-
MOD scheme uses a subgroup of order 256 bits with element
representations of 3072 bits and the other two schemes use a
subgroup of points on an elliptic curve of order 256 bits11.
SHA-256 is used as collision resistant hash function. The
machine used for tests has an Intel Core 2 Duo CPU at
2.4GHz.

2) The test results: The goal of a first experiment is to
study the time efficiency of the construction based on qTMC
using different values for q. During the tests an EDB with 200
elements with keys of 120 bits is committed and a series of
queries (both for belonging and for non-belonging elements)
and verifications of the resulting proofs are executed. The mea-
sures (in time and space) are reported in Table II. For the space
occupation of the proofs, the optimal value q = 8 determined
through the previous formal analysis is clearly confirmed as
a good choice. Such value looks a good compromise also for
the time efficiency: it is optimal in several measures and quite
good in the rest.

The goal of a second experiment is to compare (in time
and space) the three considered schemes: the value q = 8
is adopted in the construction based on qTMC. The results
are summarized in Table III. The MRK-MOD is confirmed
as the worst choice from almost all the points of view: its
time efficiency is probably compromised by the large modulus
required to satisfy the security level. Our proposal, in spite
of the more complex underling structure, is computationally
more efficient than the original MRK-MOD (but not than
MRK-ECC). As stated before, it beats the competitors in the
space efficiency. On the other hand, we have to note that the
verification of non-membership proofs is quite slow in our
construction: this is due to the pairing applications involved
in that step12.

VI. CONCLUSIONS

In this paper we introduced and implemented the notion
of trapdoor q mercurial commitments. Our construction can
be used to construct Zero-Knowledge Sets that allow for
proofs that are much shorter than those obtained by previous
work. It would be interesting to investigate if it is possible
to come up with an even more efficient implementation of
the new primitive. In particular, it would be very interesting
to construct qTMCs that allow for openings whose length is
independent of q.

10The sources of the tests are available upon request to the authors.
11In the PBC library, the required elliptic curves is the “type F” that uses

groups of order 256 bits, with elements representations of 256 bits for G1 and
of 512 bits for G2. To be more precise, the representation requires a further
single bit to store the sign of the y component of the point.

12We notice that this might be improved with a better support by the PBC
library for the pre-computation in the pairing function applications.

14

measure q = 2 q = 4 q = 8 q = 16 q = 32 q = 64
commit EDB (ms) 140196.762 104850.553 116795.299 157833.864 238242.889 387052.189

query on ∈ elem. (ms) 0.940 0.500 0.280 0.280 0.220 0.220
verify of proofs ∈ (ms) 657.401 390.584 343.521 381.224 503.951 755.447
query on /∈ elem. (ms) 1261.899 870.074 905.977 1160.653 1699.826 2720.550
verify of proofs /∈ (ms) 14708.679 7364.700 4897.366 3678.130 2996.627 2634.925

space ∈ proofs (bits) 185056 123376 123296 153976 221536 348496
space /∈ proofs (bits) 123240 61620 41080 30810 24648 20540

TABLE II
MEASURES ON OUR EDB CONSTRUCTION WITH DIFFERENT VALUES FOR q (BEST VALUES IN BOLD)

measure MRK-MOD MRK-ECC our scheme (q = 8)
commit EDB (ms) 545470.090 144977.060 326308.393

query on ∈ elem. (ms) 0.168 0.200 0.360
verify of proofs ∈ (ms) 895.456 539.122 359.350
query on /∈ elem. (ms) 1066.827 285.154 934.858
verify of proofs /∈ (ms) 661.001 478.174 5172.419

space ∈ proofs (bits) 1613312 194552 129448
space /∈ proofs (bits) 1580800 162040 43134

TABLE III
COMPARISON OF THE EFFICIENCY OF THE THREE SCHEMES (BEST VALUES IN BOLD)

REFERENCES

[1] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. ACM Conference on Computer and
Communications Security, 1993.

[2] M. Blum, A. De Santis, S. Micali and P. Persiano. Non Interactive Zero
Knowledge. SIAM Journal on Computing, 20(6), 1991.

[3] D. Boneh and X. Boyen. Short Signatures Without Random Oracles.
Advances in Cryptology – proceedings of EUROCRYPT 2004, pages 56–
73, LNCS 3027, 2004.

[4] D. Catalano, Y. Dodis and I. Visconti. Mercurial Commitments: Minimal
Assumptions and Efficient Constructions. Theory of Cryptography
Conference – TCC 2006, pages 120–144, 2006.

[5] D. Catalano, D. Fiore, and M. Messina. Zero-knowledge sets with short
proofs. Advances in Cryptology – proceedings of EUROCRYPT 2008,
LNCS 4965, pages 433–450, 2008.

[6] M. Chase, A. Healy, A. Lysyanskaya, T. Malkin and L. Reyzin.
Mercurial commitments with applications to zero-knowledge sets. Ad-
vances in Cryptology – proceedings of EUROCRYPT 2005, LNCS 3494,
pages 422–439, 2005.

[7] J.H. Cheon. Security Analysis of the Strong Diffie-Hellman Prob-
lem. Advances in Cryptology – proceedings of EUROCRYPT 2006,
LNCS 4004, pages 1–11, 2006.

[8] R. Cramer and I. Damgård. New Generation of Secure and Practical
RSA-based signatures. Advances in Cryptology – proceedings of
CRYPTO ’96, LNCS 1109, pages 173–185, 1996.

[9] I. Damgård. Collision free hash functions and public key signature
schemes. Advances in Cryptology – proceedings of EUROCRYPT ’87,
LNCS 304, pages 203–216, 1987.

[10] C. Dwork and M. Naor. An efficient existentially unforgeable signature
scheme and its applications. Journal of Cryptology, 11(3) 1998, pages
187–208.

[11] S.D. Galbraith, K.G. Paterson and N.P. Smart. Pairings for Cryp-
tographers. Cryptology ePrint Archive, Report 2006/165, 2006.
http://eprint.iacr.org.

[12] R. Gennaro and S. Micali. Independent Zero-Knowledge Sets. Proceed-
ings of ICALP 2006, pages 34–45, 2006.

[13] GNU Multiple Precision Arithmetic Library.
http://www.gmplib.org.

[14] S. Goldwasser and R. Ostrovsky. Invariant Signatures and Non Interac-
tive Zero Knowledge proofs are equivalent. Advances in Cryptology –
proceedings of CRYPTO ’92, pages 228–245, 1993.

[15] B. Libert and M. Yung. Concise mercurial vector commitments and
independent zero-knowledge sets with short proofs. Proceedings of
TCC 2010, pages 499–517, 2010.

[16] C.H. Lim. Efficient Multi-Exponentiation and Application to Batch Ver-
ification of Digital Signatures. Unpublished manuscript, August 2000.

[17] C.H. Lim. and P.J. Lee. More Flexible Exponentiation with Precomputa-
tion. Advances in Cryptology – proceedings of CRYPTO ’94, LNCS 839,
pages 95–107, 1994.

[18] M. Liskov. Updatable zero-knowledge databases. Advances in Cryptol-
ogy – proceedings of ASIACRYPT 2005, LNCS 3788, pages 174-198,
2005.

[19] R. Merkle. A Digital Signature based on a Conventional Encryption
Function. Advances in Cryptology – proceedings of CRYPTO ’87,
LNCS 293, pages 369–378, 1988.

[20] S. Micali, M. Rabin and J.K. Kilian. Zero-Knowledge Sets. Proceedings
of the 44th Annual IEEE Symposium on Foundations of Computer
Science – FOCS ’03, page 80, 2003.

[21] S. Micali, M. Rabin and S. Vadhan. Verifiable Random Functions.
Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science – FOCS ’99, page 120, 1999.

[22] L. Nguyen. Accumulators from Bilinear Pairings and Applications.
Topics in Cryptology – CT-RSA 2005, LNCS 3376, pages 275–292, 2005.

[23] NIST Recommendation for Key Management, 2005.
[24] R. Ostrovsky, C. Rackoff and A. Smith. Efficient Consistency Proofs

for Generalized Queries on a Committed Database. Proceedings of
ICALP 2004, LNCS 3142, pages 3–26, 2004.

[25] PBC (Pairing-Based Cryptography) Library.
http://crypto.stanford.edu/pbc/.

[26] T. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. Advances in Cryptology – proceedings of CRYPTO ’91,
LNCS 567, pages 129–140, 1992.

[27] M. Prabhakaran and R. Xue. Statistically Hiding Sets. Cryptology ePrint
Archive, Report 2007/349, 2007. http://eprint.iacr.org.

APPENDIX A
TRAPDOOR MERCURIAL COMMITMENTS

A trapdoor mercurial commitment scheme is defined by the
following set of algorithms:
(KeyGen,HCom,HOpen,HVer,SCom,SOpen,SVer,Fake,
HEquiv,SEquiv).

• KeyGen(1k): is a probabilistic algorithm that takes in
input a security parameter k and outputs a pair of
public/private keys (pk, tk);

• HCompk(m): given a message m, this algorithm com-
putes a hard commitment C to m using the public key
pk and returns some auxiliary information aux;

15

• HOpenpk(m, aux): the hard opening algorithm produces
a hard decommitment π to the message m correlated to
(C, aux) = HCompk(m);

• HVerpk(m,C, π): the hard verification algorithm
HVerpk(m,C, π) accepts (outputs 1) only if π proves
that C is a hard commitment to m;

• SCompk(): produces a soft commitment C and an auxil-
iary information aux. We observe that a soft commitment
string C is created to no message in particular;

• SOpenpk(m, flag, aux): produces a soft decommitment τ
(also known as “tease”) to a message m. The parameter
flag ∈ {H,S} points out if τ corresponds to a hard
commitment (C, aux) = HCompk(m) or to a soft com-
mitment (C, aux) = SCompk(). A soft decommitment τ
to m says that “if the commitment C produced together
with aux can be opened at all, then it would open to m”;

• SVerpk(m,C, τ): checks if τ is a valid decommitment
for C to m. If it outputs 1 and τ corresponds to a hard
commitment C to m, then C could be hard-opened to m;

• Fakepk,tk(): produces a “fake” commitment C which at
the beginning is not bound to any message. It also returns
an auxiliary information aux;

• HEquivpk,tk(m, aux): the hard equivocation algorithm
generates a hard decommitment π for (C, aux) =
Fakepk,tk() to the message m. A fake commitment is
quite similar to a soft commitment with the additional
property that it can be hard-opened;

• SEquivpk,tk(m, aux): generates a soft decommitment τ
to m using the auxiliary information produced by the
Fake algorithm.

To satisfy the correctness property we require that ∀m ∈M
the following statements are false only with negligible proba-
bility:

1) if (C, aux) = HCompk(m):

HVerpk(m,C,HOpenpk(m, aux)) = 1

SVerpk(m,C,SOpenpk(m,H, aux)) = 1

2) If (C, aux) = SCompk():

SVerpk(m,C, qSOpenpk(m,S, aux)) = 1.

3) If (C, aux) = Fakepk,tk():

HVerpk(m,C,HEquivpk,tk(m, aux)) = 1

SVerpk(m,C,SEquivpk,tk(m, aux)) = 1

1) Security properties: We require that a trapdoor mercurial
commitment scheme satisfies the following security properties:
• Mercurial binding. Having knowledge of pk, it is com-

putationally infeasible for an algorithm A to come up
with C,m, π,m′, π′ such that either one of the following
cases holds:

– π is a valid hard decommitment for C to m and
π′ is a valid hard decommitment for C to m′, with
m 6= m′. We call such case a “hard collision”.

– π is a valid hard decommitment for C to m and
π′ is a valid soft decommitment for C to m′, with
m 6= m′. We call such case a “soft collision”.

• Mercurial hiding. There exists no PPT adversary A
that, knowing pk, can find a message m ∈ M
for which it can distinguish (C, SOpenpk(m,H, aux))
from (C ′,SOpenpk(m,S, aux′)), where (C, aux) =
HCompk(m) and (C ′, aux′) = SCompk().

• Equivocations. There exists no PPT adversary A that,
having knowledge of the public key pk and the trapdoor
key tk, can win in the following games with non-
negligible probability. In such games A must tell apart
the “real” world from its corresponding “ideal” world.
The challenger flips a binary coin b ∈ {0, 1}. If b = 0
it gives to A a real commitment/decommitment tuple; if
b = 1 it gives to A an ideal tuple produced using the
fake algorithms.

– HEquivocation. A chooses m ∈ M and gives
it to the challenger. If b = 0 the chal-
lenger gives to A a tuple (C, π, τ) such that:
(C, aux) = HCompk(m), π = HOpenpk(m, aux)
and τ = SOpenpk(m,H, aux). Otherwise it returns
(C, π, τ) such that: (C, aux) = Fakepk,tk(), π =
HEquivpk,tk(m, aux) and τ = SEquivpk,tk(m, aux).

– SEquivocation. If b = 0 the challenger generates
(C, aux) = SCompk() and gives C to A. Then
A chooses m ∈ M, gives such m to the chal-
lenger and receives SOpenpk(m,S, aux). Otherwise
if b = 1 A first gets Fakepk,tk(), then it chooses
m ∈ M, gives it to the challenger and finally
receives SEquivpk,tk(m, aux).

At the end of the game A outputs b′ as its guess for b
and wins if b′ = b.
It is easy to see that the mercurial hiding is implied by
the HEquivocation. Moreover if the scheme is proper (i.e.
the soft opening is a proper subset of the hard one),
then the HEquivocation can be simplified by giving to
the adversary only the hard opening π.

RELATION TO PREVIOUS DEFINITIONS. We observe that the
definition of equivocations stated above is slightly different
from the one in [4] where the authors define three equivocation
properties: HHEquivocation, HSEquivocation and SSEquivo-
cation. They claim that a mercurial commitment scheme that
satisfies their definition satisfies also the one of Chase et al.
[6]. The statement is true but what is not made clear in their
paper is that, in order to make the proof valid, the scheme has
to be proper. From a theoretical point of view the claim still
holds for all schemes, as a non-proper mercurial commitment
can be alway converted into a proper one: simply by defining
the hard opening as the hard opening plus the soft opening.
However this may be tricky in practice. First of all because if
this is not said clearly one may use a non-proper scheme not
being aware that it does not enjoy itself (i.e. without applying
the conversion to proper) all the properties guaranteed by the
Chase et al.’s definition (e.g. building ZKS). Second, if one
has an efficient non-proper scheme, the conversion to proper
may leak something in efficiency.

Therefore in our work we propose a slightly different
definition that is more general than the one of Catalano et
al. [4]. Our SEquivocation is the same as the SSEquivocation

16

in [4] while our HEquivocation is like the HHEquivocation
with the addition that we allow the adversary to receive also
the soft opening of the challenge commitment. It is easy to see
that our new definition implies the definition of Chase et al.
[6] without any requirement on the properness of the scheme
and thus it also allows to build ZKS directly (i.e. without any
conversion) from any mercurial commitment scheme (proper
and non-proper). Finally it still has the same nice property of
the definition in [4] of being easy to prove, compared with the
one in [6].

APPENDIX B
THE MRK TRAPDOOR MERCURIAL COMMITMENT SCHEME

Here we briefly describe the trapdoor mercurial commitment
scheme based on the Discrete Logarithm Assumption given by
Micali et al. in [20], and later formalized by Chase et al. in
[6].

Let G be a group of prime order p in which the Discrete
Logarithm is hard. The scheme is defined by the following
algorithms:
• KeyGen(1k): the key generation algorithm selects a ran-

dom generator g ∈ G, picks a random integer x ∈ Z∗p
and sets h = gx. The public key is pk = (g, h) while the
trapdoor is tk = x;

• HCompk(m): selects two random integers r, s ∈ Z∗p and
then sets hr = hr, C = gmhsr. The hard commitment to
m is the pair (C, hr), while r, s represent the auxiliary
information;

• HOpenpk(m, aux): produces a hard decommitment π
which contains the auxiliary information aux = r, s;

• HVerpk((C, hr),m, π): uses the public key to check if
C = gmhsr and hr = hr. It returns 1 if both the tests are
valid, 0 otherwise;

• SCompk(): produces a soft commitment (C, hr) where
hr = gr and C = hsr, for r, s randomly chosen in Z∗p;

• SOpenpk(m, aux): produces a soft decommitment τ = s′

to the message m for a commitment produces using aux.
It computes s′ = s−m/r;

• SVerpk((C, hr),m, τ): the soft verification algorithm
checks if C = gmhs

′

r ;
• Fakepk,tk(): does the same computation as SCom;
• HEquivpk,tk(m, aux): uses the trapdoor key to create a

valid hard decommitment π = r, s′ to m where s′ =
s−m/rx;

• SEquivpk,tk(m, aux): returns a soft decommitment τ =
s′, with s′ computed as in the hard equivocation.

